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We present a simple real space method,  based on the Green ' s  function 
formalism, which is convenient for the calculation of the electronic structure 
of polymers with broken translational symmetry.  The method is applied to 
the study of a model  Hamiltonian which may describe conformational  
modifications of polymeric molecules. The possible role of localized states 
in chemical and biophysical processes is discussed. 
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I. Introduction 

Macromolecules may represent  the simplest systems showing the balance of 
permanence  and mutat ion which is essential to life processes. The manyfold 
importance of byopolymers  is partly expressed in their capacity to undergo 
chemical reactions as well as to play the important  role of biocatalysts (enzymes). 
It has been recently proposed [1, 2] an orbital per turbat ion approach to enzymatic 
catalysis, in which the substrate-induced conformational  changes [3] are coupled 
to the electronic eigenstates of the enzyme. These "induced-fi t"  changes are 
considered as collisional distortions of the enzyme molecules which allow for 
the existence of electronic states in previously forbidden regions. 
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Some years ago Koster and Slater [4] analyzed the effect of reducing the 
short-range order of crystal lattices; in particular they were concerned with the 
existence of localized impurity levels in the electronic structure of the system. 
More recently this problem has been studied by Morton-Blake [5] for a one- 
dimensional homopolar linear chain (polymer). In the preceding work [6] we 
introduce the concept of transfer matrix for 1d-systems with long range coupling, 
and apply this technique to the linear chain problem, for which an analytic 
solution is obtained. The inclusion of only nearest-neighbors coupling is a good 
approximation if the interaction decays as 1/r 3 (or faster) [6]. 

In the present work, we consider a two band model Hamiltonian, which mimics 
the valence and conduction electronic states of a polypeptide chain, and study 
the modifications in the electronic structure of the system induced by local 
conformational changes. These modifications describe possible mechanisms for 
chemical reactions which occur during collisions between polymers and reacting 
molecules. 

2. Theory 

We describe a nonperturbed polypeptide chain by an infinite alternative sequence 
of two types of radicals, A and B, along a chain (Fig. la). We take, at each 
lattice site l, the chemically active molecular orbital for the radical at the site, 
]X~). We assume that {IX1)}/ . . . . .  constitutes a complete orthonormal set to 
describe the electronic states related to the chemical properties under considera- 
tion. The model Hamiltonian, within the one orbital per site and nearest- 
neighbors coupling approximation, is written in the site representation as: 

e ta la t+B E (1) Oll Oll+6 
1=--oo 1=--oo ~=• 

where a [ (at) creates (destroys) the proper molecular orbital Ixt); the eigen energy 
et = a or - a  according to whether site l is occupied by species A or B (the 
energy origin is chosen midway between the two eigen energies) and/~ is the 
resonance integral between neighboring A and B molecular orbitals. 
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Fig. 1. Schematic representation of (a) the undistorted polymer and (b) the "kink" conformation. 
The diagonal and resonance Hamiltonian parameters are indicated 
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The spectrum associated to Hamiltonian (1) is constituted by two bands [7], 
corresponding to the energy regions [ - ~ , - a ] ,  [ a , x / a - ~ - - ~ ] .  The 
lower region corresponds to the valence band, and is mostly of B-like character, 
while the upper region, the conduction band, has A-l ike character. Notice that 
this model yields bands of the same width. 

We consider that during the collision of this chain with a reacting species C, a 
local configurational deformation may be simulated by the "kink"  represented 
in Fig. lb.  

Such a deformation is introduced in the model Hamiltonian in two ways: 
modifying by 6 the self energy of site 0:e0 = - a  + 3, and considering a resonance 
integral y between sites +1 and -1 .  For simplicity the other parameters are 
assumed to remain unchanged. The broken symmetry around site 0 causes the 
appearance of localized electronic states which split-off the continuum. The 
eigenvalues of these states are easily found by calculating the poles of the Green's  
function associated to the model Hamiltonian. The Green's  function matrix 
elements in the basis set {IXt)} may be obtained from Dyson's equation, solved 
by the standard transfer matrix approach (see Appendix). Defining Gq = (xiIG[)0), 
the diagonal elements associated to the impurity site and its nearest neighbors 
are given by: 

(E  -- a - y - f l T I ( E ) )  
G00 - (2) 

D s ( E )  

(E +ce - 8 ) ( E - a  - f l T l ( E ) ) - f l 2  
Gll  - (3) 

D s ( E ) D p ( E )  

where 

D , ( E )  = ( E + a  - 3 ) ( E -  ~ - 2 / -  f l T I ( E ) ) -  2fl 2 (4) 

D p ( E )  = (17, - ol + 3' - f lT~(E)  ) (5) 

and 

Ta(E)  = {(E 2 - a 2) + [(E 2 _ ol 2)(E2 - ol 2 _ 4fl2)]~/2}/[2 ~ (E + ol)] 

E - o l  
T2(E). (6) 

= E + ~  

The sign of the square root is plus in the lower band and in the gap, and minus 
elsewhere. 

The poles of Go0, i.e. the roots of D s ( E )  = 0, correspond to the energies of the 
localized eigenstates symmetric with respect to site 0 (or s-like). Antisymmetric 
(or p-like) states have zero amplitude at site 0, and therefore their energies 
correspond to the poles of G ~  which are not present in Ooo; they are given by 
the roots of D p ( E )  = O. 

In the numerical applications below, we have in mind a compound like poly- 
glicine, for which the bandwidth ( B W )  and gap (G) available in the literature 
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Table 1. Results obtained from band theory calculations for polyglycine 
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Valence band Conduction band Energy gap 
width (eV) width (eV) (eV) Ref. 

0.12 0.26 3.0 [8] 
- -  - -  6.1-16.7 [9] 
2.1 1.4 8.5-11.6 [10] 

are given in Table 1 [8, 9, 10]. We take o~ = 2 f ,  which yields equal bandwidths 
of 0 . 8 3 f  and a gap of 4 f  so that the ratio G / B W  = 4.8, which is reasonable as 
compared  to the values obtained from Table 1. It  is also convenient to take f 
as the energy unit. 

3. Results and Discussions 

We consider initially the simplest kind of perturbat ion for the proposed model, 
which consists of just modifying the diagonal term in the central site by 8, and 
keeping 3' = 0. Of course this type of per turbat ion produces only s-like localized 
states. The eigen energies of these states are given, as a function of 8If, in Fig. 
2. Notice that these eigen energies may correspond to any point in the originally 
" forbidden"  energy region, depending on the value of 8. 

For 3/# 0, antisymetric or p-localized states are obtained, which are of course 
independent  of 8. The eigen energies of the p states as a function of 3,If are 
presented by the full line in Fig. 3; similarly to the case discussed above, they 
may also correspond to any point in the " forbidden"  energy region, depending 
of 3,- The s-like states are a function of both 3, and 6: in Fig. 3 we just consider 
the 3,-dependence of their eigen energies for two different values of 8I f  given 
by the interrupted lines. I t i s  interesting to notice that in the central gap region 
there is a crossing of s and p states for increasing values of 3,/ft. 
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f I I , : : ~ 3 5 ~/~" 
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Fig. 2. Eigen energies Es of the localized states 
as a function of the "kink" perturbation para- 
meter 8/fl, for 3' = 0. The energy bands are 
given by the shaded regions 
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Fig. 3. Eigen energies of the symmetric (s) and antisymmetric (p) localized states as a function of 
the "kink" perturbation parameter ~,/~, for 8//3 = 1 and 2 

The results presented in Figs. 2 and 3 correspond to the kink centered around 
a B-site (Fig. lb).  However,  the results for a kink around an A-site are easily 
obtained by simultaneously changing the sign of E, 6 and y (see Eqs. (4) and 
(5)), which corresponds to an inversion of Figs. 2 and 3 with respect to the origin. 

For the chemical and biological applications we have in mind, it is convenient 
to visualize a molecule C being scattered by a polymer AB, in which it induces 
a time dependent  conformational deformation simulated by a parametrization 
in time t y(t) and &(t) so that y(+oo)= 0 and 6(+o0)= O. Two different situa- 
tions are described below: 

(i) Collisions C + A B  in which ~'o, the detachment time of molecule C, is much 
larger than ~'R, the life-time for the relaxation of the polymer back from its kink 
(to >> ZR). In this case, states of definite symmetry split off the continuum: states 
originating from the valence band are occupied, while those arising from the 
conduction band are empty states. The eigen energies of these states fall in the 
"forbidden" region, that is, localized states of any given symmetry, energy and 
occupation may be produced by a conformational distortion of this kind. 

The role of localized states in some chemical and biological processes has been 
discussed by several authors in different contexts. We mention for instance the 
induced-fit changes caused by substrate molecules (C) modifying the spatial 
configuration of the enzyme molecules (polymer AB)  [3]. 
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These changes are essential to the catalytic action [11] and it has been argued 
[1, 2] that they play an important role by causing significant shifts in some critical 
electronic levels of the enzymes. A mechanism of the type described in (i) may 
qualitatively account for this type of process, as well as to represent theoretically 
an alternative description of the effect of an impurity in a linear chain. 

In fact some authors [2, 12, 14] have argued that the role of transition element 
ions, (Fe(II), Fe(III), Zn(II) etc.) which exist in small concentrations ( - 1 0  -2 per 
aminoacid) in the metalloproteins, is very similar to the effect of impurities in 
semiconductors. The appearance of localized states in "forbidden" energy regions 
allows the action of metalloproteins as enzymes, catalyzing electron transfer 
processes. 

Of course processes such as those described in (i) could also be of catalytic 
importance. 

(ii) Collisions C + A B  in which the detachment time of C is much smaller than 
the relaxation time for the polymer to eliminate the "kink" (~'o << rR). As shown 
in Fig. 3, for physically reasonable values of the perturbation parameters 6/fl 
and y/fl, it is possible to produce degenerate states of different symmetries. In 
the presence of the perturbing potential of molecule C, the transition probability 
for an electron in the state originating from the valence band to be transferred 
to the originally empty state originating from the conduction band becomes quite 
large (15). Therefore,  if ~-D<< rR, the reverse process is inhibited due to the 
absence of C, and the final state of the polymer may correspond to an excited 
electronic configuration with an electron promoted to the conduction band and 
a hole in the valence band. If the polymer is part of a cell membrane,  its electric 
conductivity would drastically increase after the scattering process. This may 
happen for example in the synapsis between an axon and a muscle cell. Molecules 
of acetylcholine, released from the axon, attach to polymeric materials of the 
muscle cell membrane thereby reducing to zero the "action potential difference" 
of ~80  mV [16]. This depolarization of the cell membrane gives origin to the 
contracting impulse along the muscle. It is known that acetylcholine molecules 
are attached to the acceptor region for a short time, being hydrolized by 
acetylcholinesterase, and the muscle cell membrane is restored to its polarized 
state. 

4. Conclusion 

We have proposed a semi-quantitative model for mechanisms which may occur 
in the context of chemical reactions, associated with conformational changes 
induced by collisions with substrate molecules. The application of the model to 
real situations would require more detailed quantitative information about the 
processes discussed in Sect. 3, so that more realistic versions could be formulated. 
The flexibility of the transfer function technique allows an equally simple treat- 
ment of more sophisticated systems, which could include, for example, more 
than two species in the chain, or different types of deformations. However,  since 
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our main physical conclusions are not expected to change, more elaborate models 
are justified only under the guidance of more specific experimental details. 

Appendix 
The Hamiltonian matrix elements relative to the basis set {[Xt)} corresponding 
to the "kink" model (Fig. lb) are: 

{ - a + 8 ,  i = ] = 0  

( -1) '+ la ,  i = ] # O  (A.1) 
(x~IHIxj )  = H "  = ~, i = ] + l 

% i = + 1 , ] =  ~1.  

Making use of Dyson's equation in this basis set: 

E G i i  = &i + Y. H,.IGi~ (A.2) 
l 

we obtain the equations related to 600: 

(E + o~ - 8) Go0 = 1 +/3 (Glo + G-lo) (A.3-a) 

( E  - ol ) G l o  = /3Goo  + / 3 6 2 o  + r G - l o  (A.3-b) 

[E + ( - 1 ) n a ] 6 , o  =/36n-1.o +/36,+1,o, [nl-> 2. (A.3-c) 

Two transfer functions must be defined to solve this infinite set of coupled Eqs. 
[7]: 

G2n,O 
T I ( E )  = - -  

O2n--l,0 
In I - 1. (A.4) 

02n+l,0 
T 2 ( E )  = - -  

G2n,O 

These functions are easily obtained from (A.3-c), and are given in Eq. (6); the 
criterium for the choice of sign is discussed in Ref. [7]: 

Since, by symmetry, Glo = 6-1o, and making use of (A.4), we may write (A.3-a) 
and (A.3-b) as: 

( E + a  - 8)Goo = 1 + 2/3G10 (A.5) 

( E  - a - 3 ' )Glo  = /3Goo  + / 3 T I ( E ) G l o  

from which 6oo, given in Eq. (2), is obtained. 

The diagonal matrix element associate to site 1 is obtained from the system: 

( E - a ) G l l  = 1 + / 3 ( 6 2 i +  6ol)  +70-11  

(E -I- a - 8)Gol =/3 (Gll  + G-11) (A.6) 

(E - a )6-11 =/3 (G-21 + 6Ol) + TGll  

[ E  +(-1)na]G, , ,~=/36 ,~_1, l+/36 ,~+1,1 ,  ]n[->2 
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w h i c h  is s o l v e d  in t he  s a m e  w a y  as (A.3) .  T h e  e x p r e s s i o n  fo r  G l l  is g i v e n  in 

E q .  (3). 
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